Школьный портал

С5 ЕГЭ по математике



С5   ЕГЭ   ПО   МАТЕМАТИКЕ    РЕШЕНИЕ




С 5   ЕГЭ   по   математике.

С5 ЕГЭ по математике решение.

С5 ЕГЭ по математике.

Условие:

Найдите все значения a, при каждом из которых оба числа 3sina+5 и 9cos2a-36sina-18 являются решением неравенства в числителе (25x-3x^2+18)*sqrt(x-1),
в знаменателе log(модуль(x-7))-1 осн.4 >=0


Решение:

Ну, насколько я понял, неравенство вот такое:
(25x-3x^2+18)*sqrt(x-1)/(log_4(|x-7|)-1) >= 0,
т.е. в знаменателе (логарифм по основанию 4 от |x-7|)-1.

1. Итак, для начала решим неравенство.
1.1. В числителе есть корень, значит, x>= 1
1.2. Квадратный двучлен в числителе раскладывается на -3(x+2/3)(x-9)
1.3. Разберемся со знаменателем.
1.3.1. Заметим, что x не может быть равен 7
1.3.2. Решим неравенство log_4(|x-7|)-1>0
|x-7| > 4 => x < 3 или x > 11
Поскольку мы решаем неравенство, и для нас важен только знак, то можно считать, что знаменатель ведет себя точно также, как (x-3)(x-11) (но только не надо забывать, что точку x=7 нужно "выколоть").

1.4. Итак, наше неравенство можно представить как систему:
x>=1
x не равен 7
-3(x+2/3)(x-9)/((x-3)(x-11)) >=0

Методом интервалов получим решение:
x принадлежит [1;3) и [9;11)

2. Теперь посмотрим на выражение 3sin(a)+5.
Поскольку значения синуса лежат внутри отрезка [-1;1], то это выражение может принимать значения в пределах отрезка [2;8].
То есть во второй полуинтервал из решения неравенства оно точно не попадает, а в первый попадает, если оно меньше 3, т.е.
3*sin(a)+5 < 3
sin(a) < -2/3
Итак, sin(a) может лежать в полуинтервале [-1;-2/3)

3. Осталось разобрать последнее условие - что 9cos2a-36sina-18 тоже является решением неравенства.
cos(2a) = 1-2sin^2(a) => выражение превращается в
9(1-2sin^2(a))-36sin(a)-18 = -18sin^2(a)-36sin(a)-9

заменим sin(a) на t и посмотрим, как ведёт себя функция y(t)=-18t^2-36t-9
на уже найденном полуинтервале [-1;-2/3).
y'(t) = -36t-36
единственный экстремум - в точке -1, и это максимум. Следовательно, функция на рассматриваемом полуинтервале всюду убывает.
y(-1) = 9
y(-2/3) = 7

Это значит, что наше второе выражение является решением неравенства только в том случае, если оно равно 9, т.е. когда sin(a) = -1

Так что ответ -
a = -пи/2 + 2пи*n

Ответ:

-пи/2 + 2пи*n



С5 ЕГЭ по математике.

Решить уравнение для всех a.


Условие:

Решить уравнение для всех a
25^x+a^2(a-1)5^x-a^5=0


Решение:

1. Делаем замену t = 5^x, получаем квадратное уравнение относительно t:
t^2 + a^2*(a-1)*t - a^5 = 0

2. Дискриминант:
D = a^4*(a-1)^2+4*a^5 = a^4*(a^2-2*a+1+4a) = a^4*(a^2+2a+1) =
= a^4*(a+1)^2 = (a^2*(a+1))^2, всегда больше или равен нулю.

3. Решения относительно t:
t1 = (-a^2*(a-1)-a^2*(a+1))/2 = -a^2*(a-1+a+1)/2 = -a^3
t2 = (-a^2*(a-1)+a^2*(a+1))/2 = -a^2*(a-1-a-1)/2 = a^2

4. Вернемся к первоначальной замене:
5^x = t
Значение показательной функции может быть только строго положительным.

Решение 5^x = -a^3 имеет место при
-a^3 > 0
a^3 < 0
a < 0.
И в этом случае x = log5(-a^3)

Решение 5^x = a^2 имеет место при
a^2 > 0
a не равно 0.
И в этом случае x = log5(a^2)


Ответ:

a < 0: x = log5(-a^3), x = log5(a^2);
a = 0: ∅;
a > 0: x = log5(a^2)



С5 ЕГЭ по математике.

Задача:

Найти все значения параметра , при которых уравнение

 

имеет хотя бы один корень.




Решение:

Запишем уравнение в следующем виде: 

.

Функция непрерывна и

1) неограниченно возрастает при , так как при любом раскрытии модулей будем иметь:

 

где  

2) убывает при , так как при любом раскрытии модулей будем иметь:

 

где  .

Следовательно, свое наименьшее значения функция  примет при , а уравнение имеет корень тогда и только тогда, когда


Решим это неравенство:





 


Ответ. .




Часть С ЕГЭ по математике:      С1     С2     С3     С4     С5     С6

Ещё задания части С:     С1     С2     С3      С4     С5     С6


    ЕГЭ 2017 по математике:

   Базовый и профильный уровень
   ЕГЭ по математике в формате pdf:

Математика базовый уровень
Математика профильный уровень

   Базовый и профильный уровень
   ЕГЭ по математике на сайте:

Базовый уровень по математике
Профильный уровень по математике

Примеры решения заданий части В и С
егэ по математике прошлых лет:

Часть В:     Задания     Решения
Задачи с решением части с:
     С1     С2     С3     С4     С5     С6







С1 ЕГЭ математике. Задание с1 с решением ЕГЭ по математике

ЕГЭ, ГИА по математике, физике, информатике, химии, биологии с решением и ответами. Подготовка к ЕГЭ и ГИА по математике, физике, информатике, химии, биологии.
Варианты ЕГЭ, гиа, демо-версии. Реальные варианты олимпиад для 1 - 11 классов с подробным решением задач и ответами. Тесты. Рефераты.

Яндекс.Метрика Рейтинг@Mail.ru
^Наверх^