Олимпиадные задания по математике 11 класс
Олимпиадные задания по математике 11 класс.
Олимпиада по математике 11 класс
Олимпиадные задания по математике. 11 класс.
1. 2. 3. 4. 5. 6. 7. 8. 9.
В игре участвуют два игрока А и Б.
Игрок А задаёт значение одного из коэффициентов a, b или c многочлена
x3 + ax2 + bx + c.
Игрок Б указывает значение любого из двух оставшихся коэффициентов.
Затем игрок А задаёт значение последнего коэффициента.
Существует ли стратегия игрока А такая, что как бы ни играл игрок Б, уравнение
x3 + ax2 + bx + c = 0
имеет три различных (действительных) решения?
Пусть
f(x) = (...((x – 2)2 – 2)2 – 2)2... – 2)2
(здесь скобок ( ) – n штук). Найдитеf І(0)
Числа a , b и c таковы , что
a2 + b2 + c2 = 1.
Докажите, что
a4 + b4 + c4 + 2(ab2 + bc2 + ca2)2 Ј 1.
При каких a, b и c неравенство превращается в равенство?
Пусть прямая L перпендикулярна плоскости P.
Три сферы попарно касаются друг друга так, что каждая сфера касается плоскости P и прямой L.
Радиус большей сферы равен 1 . Найдите минимальный радиус наименьшей сферы.
На валютной бирже острова Удача продают динары (D), гульдены (G), реалы (R) и талеры (T).
Биржевые маклеры имеют право совершить сделку купли-продажи с любой парой валют не более одного раза за день.
Курсы валют такие: D = 6G, D = 25R, D = 120 T, G = 4R, G = 21T, R = 5T.
Например, запись D = 6G означает,что 1 динар можно купить за 6 гульденов (или 6 гульденов можно продать за 1 динар).
Утром у маклера было 80 динаров, 100 гульденов, 100 реалов и 50400 талеров.
Вечером у него было одинаковое число динаров и талеров.
Каково максимальное значение этого числа?
Известно, что n-вершинник содержит внутри себя многогранник M с центром симметрии в некоторой точке Q и сам содержится в многограннике, гомотетичном M, с центром гомотетии в точке Q и коэффициентом k.
Найдите наименьшее значение k, если
а) n = 4, b) n = 5
Докажите, что существуют арифметические прогрессии произвольной длины, состоящие из различных попарно взаимно простых натуральных чисел.
Докажите, что плоскость, делящая в одинаковом отношении площадь поверхности и объем описанного многогранника проходит через центр вписанной в этот многогранник сферы.
В треугольнике ABC угол A равен a, а угол B равен 2a.
Окружность с центром в точке C радиуса CA пересекает прямую,
содержащую биссектрису внешнего угла при вершине B в точках M и N.
Найдите углы треугольника MAN.