Школьный портал

С4 ЕГЭ по математике



С4   ЕГЭ   ПО   МАТЕМАТИКЕ    РЕШЕНИЕ




С 4   ЕГЭ   по   математике.

С4 ЕГЭ по математике решение.


С4 ЕГЭ по математике.

Хорда окружности, описанной вокруг треугольника

Условие:

Радиус окружности, описанной около ∆ АВС, равен 13, Cos ВАС = - 5/13. Высота, проведённая к стороне ВС, равна 5. Найдите длину той хорды АМ описанной окружности, которая делится пополам стороной ВС.

Решение:



1. Во-первых, найдем BC. Как известно, угол, вписанный в окружность, опирается на вдвое большую дугу. Обозначим угол BAC за "альфа" (его косинус мы знаем). Тогда дуга BC (большая) равна 2альфа, а угол BOC, соответственно, 2пи-2альфа.

Хорда BC = 2R*sin(BOC/2) = 2*R*sin(пи-альфа) = 2*R*sin(альфа) = 2*R*sqrt(1-(5/13)^2) = 2*13*12/13 = 24.

2. Из прямоугольного треугольника BKO находим KO = sqrt(13^2-12^2) = 5

3. Теперь нам пора заметить, что у нас опять два случая. Как обычно, обозначим их красным и синим. Рассмотрим красный, а синий получится сам собой.

4. Из точки D отложим отрезок DP, параллельный и равный AT=5. KO=DP, оба они перпендикулярны BC...
В общем, я веду к тому, что точки M, O и P лежат на диаметре, параллельном BC, а треугольники ADT и DMP равны.

5. Рассмотрим прямоугольные треугольники ODM и Atd. Углы ADT и OMD равны, а значит, эти треугольники подобны (по двум углам).
Можем составить пропорцию:

OM/DM = AD/td. Кстати, обозначим DM за x (То есть, в окончательном ответе нам нужно будет указать 2x).
Итак, 13/x = x/td.

В свою очередь, td найдем из треугольника Atd:
td = sqrt(x^2-25)

Итак, вот и получилось уравнение:
13/x = x/sqrt(x^2-25)
Оно сводится к биквадратному
x^4-169*x^2+4225 = 0

У него есть два положительных корня:
x1 = sqrt(13/2*(13+sqrt(69))) (это для "красного" случая)
x2 = sqrt(13/2*(13-sqrt(69))) (это для "синего" случая)

Надо ещё умножить на два.

Ответ:

2*sqrt(13/2*(13+sqrt(69))), 2*sqrt(13/2*(13-sqrt(69)))




С4 ЕГЭ по математике.

Условие:

Трапеция ABCD
Площадь её = 90
AD=2BC
P - середина AD
Диагонали пересекаются в точке О и также пересекают отрезки PB и PC в точках М и N.
Найти площадь OMNP


Решение:

ABCP и PBCD - параллелограммы с одинаковыми основаниями и высотами, точки M и N - точки пересечения их диагоналей.
Это значит, что MN параллельно BC. Это вроде бы очевидно, но тем не менее.
И из этих же соображений мы в два счета доказываем, что MN = BC/2

Четырехугольник OMNP состоит из треугольников OMN и PMN с общим основанием MN. Значит, его площадь равна сумме их площадей и равна MN, помноженной на сумму высот этих треугольников пополам.
А сумма их высот - это расстояние от точки O до AD.

Вот и найдем это расстояние. Мы знаем, что треугольники AOD и COB подобны (по трем углам), а BC и AD относятся как 1:2. Значит, и высоты этих треугольников относятся как 1:2, и получается, что расстояние от O до AD равно 2/3 высоты трапеции.

То есть, если известная нам площадь трапеции равна
S = h*(AD+BC)/2 = 3/2*h*BC,
то искомая площадь четырехугольника равна

(2/3*h)*(BC/2)/2 = h*BC/6 = S/9 = 10

Ответ: 10



С4 ЕГЭ по математике

Дан угол ABC, равный 30о. На его стороне BA взята точка Dтакая, что AD=2 и BD=1. Найти радиус окружности, касающейся прямой BC и проходящей через точки A, D




Решение:

Центр О искомой окружности принадлежит серединному перпендикуляру к отрезку AD. Обозначим буквой P середину AD, буквой Q - основание перпендикуляра, опущенного на прямую BC из точки O, буквой E - точку пересечения прямой BC и серединного перпендикуляра. Отрезки OA, OD, OQ равны радиусу R окружности.

Заметим, что точка O не может лежать по ту же сторону от прямой AB, что и точка E, так как в этом случае расстояние от точки O до прямой BC меньше, чем расстояние от нее до точки A.

ЕГЭ по математике

Из прямоугольного треугольника BPE с катетом BP=2 и углом B=30o находим, что 

  

Так как OA=R и AP=1, получим:

и, следовательно, 

 

Из прямоугольного треугольника OQE, в котором угол E=60o, находим:

 

Таким образом, получаем следующее уравнение для R:

 

Данное уравнение легко приводится к квадратному возведением в квадрат левой и правой частей и приведением подобных членов.

 

Решив данное уравнение, получим R1=1, R2=7.



Ответ. 1 или 7.






С4 ЕГЭ по математике.




Часть С ЕГЭ по математике:      С1     С2     С3     С4     С5     С6

Ещё задания части С:     С1     С2     С3      С4     С5     С6


    ЕГЭ 2017 по математике:

   Базовый и профильный уровень
   ЕГЭ по математике в формате pdf:

Математика базовый уровень
Математика профильный уровень

   Базовый и профильный уровень
   ЕГЭ по математике на сайте:

Базовый уровень по математике
Профильный уровень по математике

Примеры решения заданий части В и С
егэ по математике прошлых лет:

Часть В:     Задания     Решения
Задачи с решением части с:
     С1     С2     С3     С4     С5     С6







С1 ЕГЭ математике. Задание с1 с решением ЕГЭ по математике

ЕГЭ, ГИА по математике, физике, информатике, химии, биологии с решением и ответами. Подготовка к ЕГЭ и ГИА по математике, физике, информатике, химии, биологии.
Варианты ЕГЭ, гиа, демо-версии. Реальные варианты олимпиад для 1 - 11 классов с подробным решением задач и ответами. Тесты. Рефераты.

Яндекс.Метрика Рейтинг@Mail.ru
^Наверх^